The business of commercial television is the selling of audiences to advertisers, which often translates into the buying and selling of rating points. Television programmers have long been aware of the capacity of a program to “inherit” sizable ratings from the program scheduled immediately before it. Although intervening variables, such as program genre, lead-out, and daypart, have been shown to have some minor influence on this phenomenon, by far the most powerful predictor of program ratings has been the mere size of a program’s lead-in audience. Because most networks and large-market television stations negotiate commercial rates based on audience delivery, the ratings gained or lost from program scheduling can amount to subsequent gains or losses in advertising revenue (Surmanek, 1996). One could argue that managing programming essentially is the managing of audiences for sale, or more precisely the managing of ratings points for sale.

Inheritance effects have been reaffirmed empirically many times during the 1970s and 1980s. However, in recent years conventional broadcast television, represented by “the Big Four” of ABC, CBS, NBC and Fox, has experienced so much audience upheaval, it seems plausible to question the potency of lead-in scheduling strategies. Given the circumstantial evidence of plummeting ratings coinciding with ever-increasing program competition from cable, satellite, and other alternative media over the past decade, one might suspect that audiences today are more discriminating and therefore, less susceptible to the powers of lead-in.

The purpose of this study was to ascertain whether lead-in programming over the past decade has lost its punch in terms of influencing prime time audience ratings. A study comparing Nielsen prime time household ratings of 1992 with 2002 was conducted to answer this question. To date, there have been no published studies offering this type of ratings comparison. In addition to adding to the existing body of work on inheritance effects, this study raises some provocative theoretical concerns about program scheduling practices and audience behavior in a multi-channel environment.

Literature Review

Inheritance Effects

The overall ratings impact of lead-in programming has been confirmed myriad times by industry and academic researchers. Beginning in 1975, Goddhart, Ehrenberg, and Collins coined the term inheritance effects while working on the broader issue of audience duplication among programs. They discovered a highly predictable flow of audience between adjacent programs. Headen, Klompmaker, and Rust (1979) proposed a more sophisticated model introducing several independent variables including ratings, channel, program type, daypart, and repeat viewing. Using Simmons Market Research data, an examination of over 4,000 combinations of pairs of programs revealed that by a substantial margin, ratings were the single best predictor variable. A different model offered by Webster (1985) introduced factors of audience...

Abstract

Recognizing the recent dramatic increase in the number of channels available to the typical American household coinciding with an equally dramatic decrease in audience ratings for the major broadcast networks, there was reason to hypothesize that, in recent years, lead-in or inheritance effects have diminished. However, an analysis of prime time ratings comparing 1992 with 2002 for ABC, CBS, NBC and Fox showed no support for this notion, suggesting that, despite the recent upheavals in the television industry, lead-in has not lost its punch.

Walter McDowell
(wmcdowell@miami.edu)

is an Assistant Professor at the University of Miami in Coral Cables Florida. His research interests include media branding, audience research and broadcasting economics.

Steven Dick
(sdick@siu.edu)

is an Assistant Professor at Southern Illinois University in Carbondale, Illinois. His research interests include new technologies and media management.
availability, lead-in program ratings, the number of program options, and program content. Using Arbitron ratings from one sweep period, Webster concluded that for adjacent program pairs, lead-in ratings and the number of program options in combination explained 80% of the variance. A massive 22-year study of network prime time programming from 1963-1985 conducted by Tiedge and Ksobiech (1986) concluded that programs with high-ranked lead-ins scored higher share points than those with low ranked lead-ins. Also, fewer program options produced higher lead-in correlations and visa versa. In 1988, the same research team using the identical ratings data set concluded that the "pull" effects of lead-out programs were minimal compared to the stronger "push" effects of lead-in programs (Tiedge & Ksobiech, 1988). Looking at nine years of Nielsen ratings from 1976 to 1985, Walker (1988) found that the correlational relationships among inheritance effects, lead-in, program type, and number of options supported the earlier findings of Tiedge and Ksobiech (1986). Boemer (1987) found in one television market high positive correlations between audience ratings of local late evening newscasts and their respective prime time lead-ins. Davis and Walker (1990) discovered that the most effective way to compete in prime time against new media (cable and satellite) was to take advantage of lead-in effects. Examining syndicated rather than network programs, Cooper (1993) correlated the influence of several variables on program ratings including lead-in, lead-out, number of options, program type compatibility, network affiliation, and cable penetration. The results from a 50-market analysis revealed that lead-in ratings completely overwhelmed any other factor in the model. A fairly consistent conclusion found among most but not all of these early studies that included number of program options as a variable was that as the number of options increased, the correlations between lead-in and lead-out programs (i.e. inheritance effects) weakened. A more detailed examination of the definitional problems surrounding the term program options is presented in the discussion section of this study.

In later years, Inheritance effects received less academic attention but a few studies did keep the topic alive. For example, McDowell and Sutherland (2000) discovered in a one-year, single market case study that top ranked local newscasts took greater advantage of lead-in audiences than lesser-ranked newscasts. From an advertising perspective Napoli (2001) found that at the beginning of a new fall premiere season, the ratings of returning lead-in programs can assist network sales departments in reducing the degree of error in forecasting the ratings for new prime time programs.

The Art and Science of Scheduling

Savvy television programmers will concede that the ratings performance of many supposedly successful programs is more a matter of clever scheduling than compelling content. When analyzing a program’s ratings performance Webster, Phalen and Lichty (2000) warn that Some people assume the choice of a program centers upon the active expression of a preference for a program or type of program. However, so called structural factors have traditionally been considered important mediators of the programs viewers choose and complicate the relationship between viewing preference and viewing behavior. (p. 178)

Over the years, these structural factors have acquired their own special jargon as outlined by Eastman & Ferguson (2000). For example, placing a relatively weak or unfamiliar program between two strong programs is called “hammocking”. This is a common strategy used to stimulate sampling of a new program. Inserting a strong program between two weaker entries has been dubbed “tent-poling” and is often associated with the notion of salvaging a poor program line-up. Offering several adjacent programs with highly similar content, such as an evening of sitcoms, is called “block programming.” The strategy of responding to a competitor with radically different program content is known as “counter-programming.” Eastman, Newton, Riggs and Neal-Lunsford (1997) analyzed ways the major networks capitalized on inheritance effects and enhanced audience flow by positioning commercial breaks away from the natural transitions between programs.

All of the above-mentioned scheduling techniques share a common strategic thread in that they attempt to take advantage of the power of lead-in and although this strategy is still popular, there have been no nonproprietary longitudinal studies to see if this strategy has lost some of its potency. A plausible reason for alleging such a decline is the unprecedented increase over the past decade in the number of program options available to audiences.

Media and Programming Options Explode During the 1990s

During the 1970s and 1980s, when most of the above mentioned inheritance studies were conducted, the media landscape remained relatively constant. For over thirty years America was serviced by a three-network oligopoly (Long, 1979). The 1980s set the stage for the tumultuous 1990s with the expansion of cable capacity and the introduction of new competition. In 1987, Fox became a feisty competitor to the “big Three” but did not become a significant force until the mid 1990s when the network acquired the broadcast rights for NFL football and began to persuade established VHF stations to switch network affiliations (Litman, 1998; Block, 1990). Later, upstart networks WB and UPN and most recently Pax have chipped away audiences from the larger incumbent networks. Corresponding with this increase in the
number of broadcast networks was widespread dissemination in the 1990s of remote control tuning devices, which enhanced greatly the physical ease of changing channels. This technology encouraged channel “surfing” and commercial “zapping” (Ching, 2001). Also, it should be noted that despite much talk and speculation about the potential distractions from internet usage during this period, the amount of time dedicated to watching television by the typical American household actually increased. American households in 2001 watched an average of over 53 hours of television per week, a substantial increase over the 48 hours of household watching recorded in 1990 (Nielsen Report, 2001). The decade of the 1990s witnessed not only a dramatic increase in the number of broadcast networks but also a stunning increase in the number of cable/satellite networks. The 1992 Cable Consumer Protection and Competition Act stimulated the growth of a new multi-channel delivery system resulting in the deployment of DBS satellite services beginning with zero subscribers in 1993 to over 17 million in 2002 (Carlin, 2002). An analysis of the Federal Communications Commission (FCC) data revealed that a total of 105 national and regional cable networks started operations prior to 1992. Following 1992, the number has jumped to 344 channels (FCC, 2002). According to the National Cable and Telecommunications Association (NCTA), the biggest growth came between 1997 and 1999 when 111 national program services were launched (NCTA, 2003). This growth translated into more channel availability to consumers. According to Nielsen Media Research, channel availability for the typical American home (cable and non cable combined) surged from 33.2 channels in 1990 to 102 channels in 2002 (Nielsen Report 2003). The primary catalyst for this impressive growth has been attributed to the 1996 Telecommunications Act that deregulated competition and fostered the development of digital program tiers. Since 2000, the number of digital subscribers has increased by 100 percent (Carlin, 2002).

Coinciding with this onslaught of new program competition, the 1990s saw the broadcast networks lose prime time audiences at an alarming rate, culminating in the 1998-99 season when for the first time cable/satellite programming achieved prime time parity with broadcast networks. According to the Cable Advertising Bureau (CAB). This spurred the growth of cable advertising (CAB, 2003). Since that benchmark season, broadcast ratings have continued to slide.

In summary, the 1990’s were an age of great competition across all electronic media. Broadcast television was threatened by growing cable penetration and cable was threatened by growing DBS penetration and looming in the near future was Internet distribution with wealthy telephone companies getting into the electronic marketplace. Spurred on by the often-touted promise of a 500-channel cable system, multi-channel programmers developed a greatly expanded program lineup to answer the call (Burgi, 1996).

Audience Disposition

A primary assumption of inheritance effects studies has been that there are significant numbers of passive or uncommitted viewers who are not motivated to change channels (Webster, Phalen and Lichty, 2000). The result is what some researchers call tuning inertia, whereby the audience disposition is to remain on the same channel unless there is a sufficient external force that alters the mindless momentum (Cooper, 1996). This is not a new concept. Rubin (1984) maintained that the simple act of watching television, regardless of the specific content, could become a daily ritualistic behavior. Some industry observers have coined the phrase “glow and flow”, referring to the idea that programs are of secondary importance as long as something fills the screen (Head, Spann and McGregor, 2001). Furthermore, it is no secret that mere habit is a powerful force that often supercedes other motivations for seeking alternative program content (Rosenstein, 1997). None-the-less, the fact that people knowingly subscribe to multi-channel services implies a heightened awareness and motivation to investigate these viewing options. In terms of published studies, the notion of heightened awareness resulting in more deliberate channel changing is perplexing. For instance, Heeter (1985) found that channel changing was a sign of greater selectivity and reevaluation of programs. However, Perse (1990) concluded that channel changing reflected less attentive use of television.

It is certainly plausible to presume that prime time audiences have changed over time. Census records reveal that the population is aging and perhaps, this trend might signify other changes in audience dispositions. Additionally, for years academics and practitioners have speculated whether cable audiences are somehow different than broadcast audiences. In particular, there has been a running debate over possible differences in “attentiveness” and channel surfing behavior. The Television Bureau of Advertising (TVB, 2003) and the Cable Advertising Bureau (CAB, 2003) have commissioned audience studies that have yielded completely contradictory results.

A second look at Inheritance Effects

Given the above-mentioned unprecedented changes in American television during the past decade, including but not limited to (a) a nearly four-fold increase in the number of program options available to audiences (b) a significant drop in broadcast network audience ratings and (c) a substantial increase in viewing via subscription-based business models, the researchers believed there was sufficient circumstan-
tial evidence that lead-in probably has lost some of its punch. That is, instead of passive ritualistic viewing behavior, audiences can also take part in what Rubin (1987) calls instrumental behavior, characterized by viewing that is planned and attentive. With audiences supposedly becoming more discriminating, the researchers offered a working research hypothesis:

H1: Inheritance effects were not as strong in 2002 as they were in 1992.

Methodology

For this study, “inheritance effects” were operationalized as the ability of a program to retain audience ratings from the program scheduled immediately prior. The sample frame was prime-time network ratings as reported by Broadcasting and Cable and Electronic Media magazines throughout 1992 and 2002.

Coders selected ABC, CBS, NBC and Fox programs where ratings were available for the program immediately prior. Effectively, the first program was skipped and coding started with the second program of the evening. For each selected program, coders recorded (a) target program share, and (b) prior program share. Coders attempted to use all fifty-two weeks of data. However, ratings data were not available for seven weeks in 2002. These weeks were skipped – making the data set for 1992 somewhat larger. Data sets for each year were kept separate until the analysis began. At that time, a dummy variable for year was added. Audience shares rather than ratings were selected as the unit of analysis because shares are a function of HUT (Homes Using Television) levels at a specific time and therefore, offer a more standardized measure of program-to-program performance over time.

Typically, prior studies have looked at inheritance in context of several other variables. Given overwhelming support for inheritance in prior studies, this study simply compares the inheritance effect in one time period to the same effect in another time period. Prior studies looked at the correlation (Pearson’s r) between past and target program rating. More advanced studies went on to use a regression or covariant analysis to compare inheritance to other possible predictors of audience size. This study compared the correlation between past and current programs in the two time periods. A regression analysis was used to look for a difference in the predictive value of the inheritance effect.

The challenge was to look for significant differences between two regression lines. Gujarati (1988 and 1970) recommends a dummy variable approach where observations from both regressions (1992 and 2002) are pooled into a single regression.

\[Y_i = \alpha + \alpha_2 D_i + \alpha_1 X_i + \alpha_2 (D_i X_i) + \varepsilon_i \]

The above equation starts with the standard regression equation including a dependant variable \(Y_i \), the independent variable slope \(\alpha_1 X_i \), intercept \(\alpha_1 \), and error term \(\varepsilon_i \). The second regression line was tested with the additional variables \(\alpha_2 D_i \) for the intercept and \(\alpha_2 (D_i X_i) \) for the slope — where Di was a dummy variable. In this case, “year” is entered as a dummy variable \((D_i) \) with 1992 = 0 and 2002 = 1. The second term \(D_i X_i \) is computed by multiplying the dummy by the dependent variable. If the measures for this second line are significant, then the two regression lines are significantly different and the two lines can be determined from the final equation. If the measures are not significant, then the null hypothesis (no significant difference) can be accepted and one regression line exists. The advantage of this method is that both regression lines can be computed from the equation (discussed below).
There was one additional challenge to the project before continuing with the analysis. As described in the literature review, there have been some dramatic changes in the television market and these changes were reflected in the data set. The average program share in 1992 was 18.0 compared to 10.9 in 2002. An ANOVA was performed to confirm that the two data sets were significantly different ($F = 2133.2, p > 0.001$). In Figure One below you can clearly see the difference between the two histograms. Not only was the mode clearly shifted but also the curve for 2002 was more skewed than in 1992. Left uncorrected, the regression may show significance not because of a difference in inheritance but because of other differences between the years.

In order to compare effectively the two years, the share values were standardized for each year. Standardization is the process of converting data to the same scale by subtracting the sample mean and dividing by the standard deviation (Malhotra, 1993). Standardization does not change the correlation between variables but simply makes the mean equal to zero and the standard deviation equal to one. In this study, “share” and “previous share” were standardized by year. Once each data set (1992 and 2002), were standardized the analysis could proceed.

Results

The data collection resulted in a very large data set. As summarized in Table One, data were collected from 3050 programs in 1992 and 2541 in 2002. There was a shift of about seven share points difference between 1992 and 2002. Not only did overall shares drop from 18 to 10.9 but also the maximum and minimum shares dropped about the same amount. The correlation between target and previous program (Pearson’s r for share) for 1992 was 0.618 (2-tailed significance < 0.001) and in 2002 was 0.664 (2-tailed significance < 0.001). Walker (1988) looked at similar data (sweeps weeks data only) in four years between 1976 and 1985. He found a correlation of 0.69 ($p > 0.001$). This first level of the analysis shows a strong and similar effect of inheritance despite a drop in overall share.

A single regression analysis was sufficient to test the hypothesis. Table Two displays the result of the regression analysis. The overall regression equation had a reasonably strong adjusted R-square of 0.409 and the F (1289.7) was highly significant (> 0.001). Now looking at the individual variables in the equation, all variables in the equation were significant. The constant (intercept) and “previous program share” were both highly significant (> 0.001). The “dummy variable for year” and the “dummy times previous program share” were both acceptably significant at the 0.05 level. A likely level of autocorrelation between these variables probably reduced some of the significance. The first level of analysis was that the regression equation supports the importance of inheritance effect and a change in inheritance effect from 1992 to 2002. As a result, the null hypothesis (no effect) was rejected but that is not the end of the story.

Figure Two graphically displays the predicted regression lines based on raw (not standardized) data. The adjusted R-square for raw data regression in 1992 was 0.382 and in 2002 was 0.441 (intercept and slope significant > 0.001). The lines seem similar but what was important was that the slope of the line for 2002 was greater than 1992. This effect is exactly opposite of what was predicted by the operational hypothesis. If the operational hypothesis was supported, the line for 2002 would not cross the line for 1992 and would have a gentler slope. This means that the data not only fails to support the null but also the operational hypothesis.

Turning to the interpretation of the regression line summarized in Table Two. The regression equation predicts the following.

$$Y = 3.82 - 0.46D_i + 0.62X_i + 0.05D_iX_i$$

The resulting regression equations per year would then be:

- 1992 $Y = (3.82 - 0.46) + (0.62 + 0.05)X$
- 2002 $Y = (3.82 - 0.46) + (0.62 + 0.05)X$

Again, the increase is statistically significant although it is modest. What was important was the direction of the change. At the very least, this data supports the conclusion that inheritance effect is holding its own and quite possibly becoming more important. While the increase was modest, it was opposite to what was predicted from the literature review and the research design. The final analysis of this study must be that inheritance has not lost its punch. However, it is premature to say that inheritance has truly become more powerful.

Discussion

Based on the results of this study, one can conclude that despite a decade of plummeting ratings and ever-increasing competition from other media, the power of lead-in among the four ma-

<table>
<thead>
<tr>
<th>Table 1: Descriptive Statistics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>1992</td>
</tr>
<tr>
<td>2002</td>
</tr>
</tbody>
</table>
major broadcast networks appears not to have lost its punch. The real question is, “Why not?”. For the foreseeable future, program managers still will have to deal with the context as well as the content of a program. These findings were not expected and open the door to theoretical speculation and future research.

There were some obvious limitations to this study that need to be disclosed. First, only two years were selected for comparison. A more ambitious study might have examined each year within the decade, recording any annual deviations from the presumed long-term stability of inheritance effects found in this study.

A second limitation was the scope of the study in that it was restricted to the major broadcast networks and not to cable or individual local markets. In the same manner, it would be useful to study the magnitude of inheritance effects on daytime “strip” programming in addition to prime time offerings.

Another limitation was that the study dealt with simple audience ratings, which do not reveal the complexities of audience flow between programs. That is, a program does not necessarily “inherit” the entire audience from its lead-in. Instead, some audiences may arrive from other channels or from tune-in households that were not watching television at all. (For a substantial fee, Nielsen provides such information for client subscribers). Therefore, there is a certain “leap of faith” whereby the calculated regression figures are intended to reflect the migration of the same viewers from one adjacent program to another.

Assuming that regardless of the availability of dozens of new program options, a majority of viewers are not motivated to change channels, there remains the nagging question of explaining why this tuning inertia is still so strong. As mentioned earlier, the re-

Table 2: Regression output.

<table>
<thead>
<tr>
<th>Model Summary (b)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.640(a)</td>
</tr>
<tr>
<td>R Square</td>
<td>.409</td>
</tr>
<tr>
<td>Adjusted R Square</td>
<td>.409</td>
</tr>
<tr>
<td>Std. Error of the Estimate</td>
<td>.768</td>
</tr>
</tbody>
</table>

a Predictors: (Constant), Dummy for Year, Stand Prev. Share, Dummy X Prev.

b Dependent Variable: Standardized Share

ANOVA (b)

<table>
<thead>
<tr>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>2286.8</td>
<td>3</td>
<td>762.3</td>
<td>1289.7</td>
</tr>
<tr>
<td>Residual</td>
<td>3302.2</td>
<td>5587</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5589.0</td>
<td>5590</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Predictors: (Constant), Dummy for Year, Stand Prev. Share, Dummy X Prev.

b Dependent Variable: Standardized Share

Coefficients (a)

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>(Constant)</td>
<td>3.816</td>
<td>.140</td>
</tr>
<tr>
<td>Stand Prev. Share</td>
<td>.618</td>
<td>.014</td>
</tr>
<tr>
<td>Dummy X Prev.</td>
<td>.046</td>
<td>.021</td>
</tr>
<tr>
<td>Dummy for Year</td>
<td>-.459</td>
<td>.208</td>
</tr>
</tbody>
</table>

a Dependent Variable: Standardized Share
searchers assume multi-channel subscribers are sufficiently aware of non-broadcast channels. Except for alleviating over-the-air reception problems, why else would people pay money to watch television? The severe drop in broadcast network ratings and a corresponding jump in cable viewing between 1992 and 2002 substantiate this assumption. Obviously, many audiences have defected to cable and other alternative media, but once they arrive at a particular channel, perhaps the power of lead-in takes hold in the same fashion as it does for the broadcast networks. A study of lead-in programming from a broad sampling of cable networks would shed more light on this question.

As mentioned earlier, it is also possible that the demographic and psychographic composition of prime time audiences has changed over the years, resulting in different types of audiences gravitating to cable and satellite, while others remain tied to conventional TV.

Scrutinizing the literature review a second time uncovered some theoretical insights not considered when the project was first contemplated. In particular, the notion of available channels needed more extrapolation. For lead-in studies conducted in the 1970s and 1980s, the number of program options was minimal, including no more than a handful of channels. Many researchers defined the number of options at a specific time as programs that were not already in progress. For example, at 8:30 PM, if two out of four programs airing were one hour in length and began a half-hour earlier at 8:00 PM, the researchers would arbitrarily reduce the “number of options” to two. This reduced number of “options”, in turn, resulted in an observed increase in inheritance effects and visa versa. This conceptualization is a far cry from more contemporary definitions of available channels, where all channels are accrued at a specific time, regardless of the juxtaposition of the duration of the program.

A clue to understanding the underlying psychology of inheritance effects in a multi-channel environment may be found in some additional data provided by Nielsen, which reports that, while the number of available channels has nearly tripled in recent years, there has been only a modest increase in the number of channels actually viewed. According to Nielsen (2003), the typical American household today has access to over 100 channels, yet the average number of channels actually viewed is only 14.8. Furthermore, in homes capable of receiving 200 or more channels, actual viewership climbs to only 18.9. Looking back to 1994, which provided less than half the channel availability of 2002, the average number of channels viewed per household was 10. Obviously, we have a classic example of the law of diminishing returns, where more choice does not translate directly into more channels viewed. Some researchers, such as Ferguson and Perse (1993), refer to this preferred subset as a viewer’s channel repertoire. This means that regardless of an almost four-fold increase in the number of available channels, the major broadcast networks compete ultimately in a much smaller arena of only a dozen or so heavily trafficked channels. Furthermore, in terms of the proportion of channels viewed, there is circumstantial evidence of increased viewer loyalty. Where in 1994 audiences watched about 30 percent of available channels (10 out of 33), by 2001, audiences were watching less than sixteen percent of available channels (14 out of 89). Admittedly, there is substantial channel switching going on, but this frenetic activity appears to settle into a predictably small repertoire of acceptable channels of which the “Big 4” networks are usually included. Furthermore, within this repertoire, these broadcast networks still manage to capture roughly half of all viewing.

In terms of measuring audience behavior, it should be noted that Nielsen methodology attempts to discard “un-committed” viewing by enforcing five-minute minimum viewing thresholds before a station or network is given average quarter-hour (AQH) viewing credit in a published report.

After pondering these data, perhaps the durability of inheritance effects is not as surprising as the researchers initially thought. As many restaurant owners will attest to, a huge menu does not necessarily mean that customers will take equal advantage of all items available. Typically, there will be a relatively small core group of meals that account for the most of the restaurant’s business. Similarly, we propose that a vast menu of TV channel options does not produce substantial fragmentation in viewing. Audiences may “surf”, “graze” or “zap” among many channels but ultimately, they migrate back to a familiar set of a dozen or so well-used channels. In conclusion, the phenomenon known as inheritance effects appears to remain a potent force in contemporary multi-channel television and deserves continued attention and research.
References

